博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
VGG_19 train_vali.prototxt file
阅读量:7080 次
发布时间:2019-06-28

本文共 6574 字,大约阅读时间需要 21 分钟。

name: "VGG_ILSVRC_19_layer" layer {
  name: "data"   type: "ImageData"   top: "data"   top: "label"   include {
    phase: TRAIN   }     image_data_param {
    batch_size: 12     source: "../../fine_tuning_data/HAT_fineTuning_data/train_data_fineTuning.txt"     root_folder: "../../fine_tuning_data/HAT_fineTuning_data/train_data/"   } } layer {
  name: "data"   type: "ImageData"   top: "data"   top: "label"   include {
    phase: TEST   }   transform_param {
    mirror: false   }   image_data_param {
    batch_size: 10     source: "../../fine_tuning_data/HAT_fineTuning_data/test_data_fineTuning.txt"     root_folder: "../../fine_tuning_data/HAT_fineTuning_data/test_data/"   } } layer {
  bottom:"data"   top:"conv1_1"   name:"conv1_1"   type:"Convolution"   convolution_param {
    num_output:64     pad:1     kernel_size:3   } } layer {
  bottom:"conv1_1"   top:"conv1_1"   name:"relu1_1"   type:"ReLU" } layer {
  bottom:"conv1_1"   top:"conv1_2"   name:"conv1_2"   type:"Convolution"   convolution_param {
    num_output:64     pad:1     kernel_size:3   } } layer {
  bottom:"conv1_2"   top:"conv1_2"   name:"relu1_2"   type:"ReLU" } layer {
  bottom:"conv1_2"   top:"pool1"   name:"pool1"   type:"Pooling"   pooling_param {
    pool:MAX     kernel_size:2     stride:2   } } layer {
  bottom:"pool1"   top:"conv2_1"   name:"conv2_1"   type:"Convolution"   convolution_param {
    num_output:128     pad:1     kernel_size:3   } } layer {
  bottom:"conv2_1"   top:"conv2_1"   name:"relu2_1"   type:"ReLU" } layer {
  bottom:"conv2_1"   top:"conv2_2"   name:"conv2_2"   type:"Convolution"   convolution_param {
    num_output:128     pad:1     kernel_size:3   } } layer {
  bottom:"conv2_2"   top:"conv2_2"   name:"relu2_2"   type:"ReLU" } layer {
  bottom:"conv2_2"   top:"pool2"   name:"pool2"   type:"Pooling"   pooling_param {
    pool:MAX     kernel_size:2     stride:2   } } layer {
  bottom:"pool2"   top:"conv3_1"   name: "conv3_1"   type:"Convolution"   convolution_param {
    num_output:256     pad:1     kernel_size:3   } } layer {
  bottom:"conv3_1"   top:"conv3_1"   name:"relu3_1"   type:"ReLU" } layer {
  bottom:"conv3_1"   top:"conv3_2"   name:"conv3_2"   type:"Convolution"   convolution_param {
    num_output:256     pad:1     kernel_size:3   } } layer {
  bottom:"conv3_2"   top:"conv3_2"   name:"relu3_2"   type:"ReLU" } layer {
  bottom:"conv3_2"   top:"conv3_3"   name:"conv3_3"   type:"Convolution"   convolution_param {
    num_output:256     pad:1     kernel_size:3   } } layer {
  bottom:"conv3_3"   top:"conv3_3"   name:"relu3_3"   type:"ReLU" } layer {
  bottom:"conv3_3"   top:"conv3_4"   name:"conv3_4"   type:"Convolution"   convolution_param {
    num_output:256     pad:1     kernel_size:3   } } layer {
  bottom:"conv3_4"   top:"conv3_4"   name:"relu3_4"   type:"ReLU" } layer {
  bottom:"conv3_4"   top:"pool3"   name:"pool3"   type:"Pooling"   pooling_param {
    pool:MAX     kernel_size: 2     stride: 2   } } layer {
  bottom:"pool3"   top:"conv4_1"   name:"conv4_1"   type:"Convolution"   convolution_param {
    num_output: 512     pad: 1     kernel_size: 3   } } layer {
  bottom:"conv4_1"   top:"conv4_1"   name:"relu4_1"   type:"ReLU" } layer {
  bottom:"conv4_1"   top:"conv4_2"   name:"conv4_2"   type:"Convolution"   convolution_param {
    num_output: 512     pad: 1     kernel_size: 3   } } layer {
  bottom:"conv4_2"   top:"conv4_2"   name:"relu4_2"   type:"ReLU" } layer {
  bottom:"conv4_2"   top:"conv4_3"   name:"conv4_3"   type:"Convolution"   convolution_param {
    num_output: 512     pad: 1     kernel_size: 3   } } layer {
  bottom:"conv4_3"   top:"conv4_3"   name:"relu4_3"   type:"ReLU" } layer {
  bottom:"conv4_3"   top:"conv4_4"   name:"conv4_4"   type:"Convolution"   convolution_param {
    num_output: 512     pad: 1     kernel_size: 3   } } layer {
  bottom:"conv4_4"   top:"conv4_4"   name:"relu4_4"   type:"ReLU" } layer {
  bottom:"conv4_4"   top:"pool4"   name:"pool4"   type:"Pooling"   pooling_param {
    pool:MAX     kernel_size: 2     stride: 2   } } layer {
  bottom:"pool4"   top:"conv5_1"   name:"conv5_1"   type:"Convolution"   convolution_param {
    num_output: 512     pad: 1     kernel_size: 3   } } layer {
  bottom:"conv5_1"   top:"conv5_1"   name:"relu5_1"   type:"ReLU" } layer {
  bottom:"conv5_1"   top:"conv5_2"   name:"conv5_2"   type:"Convolution"   convolution_param {
    num_output: 512     pad: 1     kernel_size: 3   } } layer {
  bottom:"conv5_2"   top:"conv5_2"   name:"relu5_2"   type:"ReLU" } layer {
  bottom:"conv5_2"   top:"conv5_3"   name:"conv5_3"   type:"Convolution"   convolution_param {
    num_output: 512     pad: 1     kernel_size: 3   } } layer {
  bottom:"conv5_3"   top:"conv5_3"   name:"relu5_3"   type:"ReLU" } layer {
  bottom:"conv5_3"   top:"conv5_4"   name:"conv5_4"   type:"Convolution"   convolution_param {
    num_output: 512     pad: 1     kernel_size: 3   } } layer {
  bottom:"conv5_4"   top:"conv5_4"   name:"relu5_4"   type:"ReLU" } layer {
  bottom:"conv5_4"   top:"pool5"   name:"pool5"   type:"Pooling"   pooling_param {
    pool:MAX     kernel_size: 2     stride: 2   } } layer {
  bottom:"pool5"   top:"fc6_"   name:"fc6_"   type:"InnerProduct"   inner_product_param {
    num_output: 4096   } } layer {
  bottom:"fc6_"   top:"fc6_"   name:"relu6"   type:"ReLU" } layer {
  bottom:"fc6_"   top:"fc6_"   name:"drop6"   type:"Dropout"   dropout_param {
    dropout_ratio: 0.5   } } layer {
  bottom:"fc6_"   top:"fc7"   name:"fc7"   type:"InnerProduct"   inner_product_param {
    num_output: 4096   } } layer {
  bottom:"fc7"   top:"fc7"   name:"relu7"   type:"ReLU" } layer {
  bottom:"fc7"   top:"fc7"   name:"drop7"   type:"Dropout"   dropout_param {
    dropout_ratio: 0.5   } } layer {
  bottom:"fc7"   top:"fc8_"   name:"fc8_"   type:"InnerProduct"   inner_product_param {
    num_output: 27   } } layer {
  name: "sigmoid"   type: "Sigmoid"   bottom: "fc8_"   top: "fc8_" }  layer {
   name: "accuracy"    type: "Accuracy"    bottom: "fc8_"    bottom: "label"    top: "accuracy"    include {
     phase: TEST    }  } layer {
  name: "loss"   type: "EuclideanLoss"   bottom: "fc8_"   bottom: "label"   top: "loss" }

 

转载地址:http://lppml.baihongyu.com/

你可能感兴趣的文章
Android平台架构的介绍和源码下载
查看>>
前端 CSS : 5# 纯 CSS 实现24小时超市
查看>>
Linux中用户管理
查看>>
【译】为什么我更喜欢对象而不是switch语句
查看>>
上线清单 —— 20 个 Laravel 应用性能优化项
查看>>
浅谈React Hooks
查看>>
SpiderData 2019年2月27日 DApp数据排行榜
查看>>
linux mpstat命令
查看>>
前嗅ForeSpider教程:抽取数据
查看>>
LeetcodeT832 记录
查看>>
有赞业务对账平台的探索与实践
查看>>
【Java基本功】一文读懂String及其包装类的实现原理
查看>>
leetcode讲解--824. Goat Latin
查看>>
深入解析Node.js中的Async和Await函数
查看>>
Ubuntu 下如何安装与卸载软件 ( 一 :GUI版)
查看>>
07_01_定义加载器(Webpack Book)
查看>>
Let's encrypt 通配域名DNS验证方式的证书自动更新
查看>>
PHP 框架学习(二):Laravel
查看>>
总结常见的违背Rest原则的接口设计做法
查看>>
JAVASCRIPT中THIS指的是什么?
查看>>